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Abstract

For several years, the notion of polysign numbers has been advocated
in usenet discussions by T. Golden e.g. as a new basis for theoretical
physics. This article will show that these structures are not new after all,
but rather well-known to algebraists. The facts listed here are not new
either and have already been used in responses by several people in the
discussions mentioned, i.e. the author does not claim that any of them be
attributed to him.

1 Polysign Numbers

The inventor of polysign numbers1, T. Golden, views magnitude as fundamental
and wants to extend the two signs + and − known from traditional mathematics
by using three, four or more signs.2 The various polysign structures obtained
this way are denoted as P1, P2, P3 and so on, depending on the number of
signs used (there is no intention to define P0). In traditional math, we have the
equality

−x+ x = 0

from the very definition of −x as additive inverse of x. This is taken as a
motivation for a relation between the two signs. That is, in P2, which is built
from magnitudes (non-negative numbers) with two signs − and +, we have the
identity (“cancellation”)

−x+x = 0.

For P3, a third sign ? is summoned and the identity

−x+x?x = 0

postulated instead, for P4 a fourth sign # and the identity

−x+x?x#x = 0.

In general, Pn uses n signs denoted σ1, . . . , σn and the cancellation identity
becomes

n∑
i=1

σix = 0. (1)

1http://bandtechnology.com/PolySigned/
2To distinguish polysign signs from traditional mathematical operator symbols, the former

will always be shown in red in this paper.
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1.1 P1

The following discussion will discuss Pn for n ≥ 1, but we will not lay emphasis
on the case n = 1. The reason for this is that P1 is not as clearly defined as one
might hope—or rather there are contradictory interpretations of the definition.
For one, T. Golden imposes an order on the sign symbols by which the first
sign is always −, hence the elements of P1 are of the form −x and not +x as
perhaps expected and sometimes implicitly used. Moreover, the cancellation
identity in P1 states that −x = 0 holds for all x, thus P1 consists of only one
point (and not of the set of non-negative reals as sometimes stated).

Of course, the investigations below will also establish this observation that
P1 is a one-element set.

1.2 Addition

Additon of polysign numbers is defined componentwise, i.e. if xi, yi are magni-
tudes (i = 1, . . . , n), then

n∑
i=1

σixi +
n∑

i=1

σiyi :=
n∑

i=1

σi(xi + yi).

For example, in P4 ths means that

(−x1+x2?x3#x4)+(−y1+y2?y3#y4) = −(x1+y1)+(x2+y2)?(x3+y3)#(x4+y4).

It is straightforrwad that this is well-defined—adding a constant to all xi and/or
all yi also adds a constant to all components of the result, hence leaves it
unchanged by virtue of the cancellation identity.

1.3 Multiplication

To define multiplication of polysign numbers, it is sufficient to define all products
of signs and then extend this definition in the obvious way (i.e. linearly). The
simple rule is that (σi1) · (σj1) = σk1 if i+ j ≡ k (mod n). In P2, this yields
the basic rules so hard to capture by beginners, namely

(−1) · (−1) = +1
(−1) · (+1) = −1
(+1) · (−1) = −1
(+1) · (+1) = +1.

When moving to e.g. P4, this list becomes much longer (16 entries) and while we
still have (−1) · (−1) = +1 in P4, we must acquaint ourselves with (+1) · (+1) =
#1.

In general (
n∑

i=1

σixi

)
·

(
n∑

i=1

σiyi

)
=

n∑
k=1

σk

∑
1≤i,j≤n

i+j=k∨i+j=k+n

xiyj .

It is left as an exercise to show that this is well-defined with respect to (1)
and that the distributive law holds for addition and multiplication as defined
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here. Doing so is however hardly necessary as we are about to establish an
isomorphism with simply defined rings, thus immediately showing that Pn is
also a ring.

2 An Algebra isomorphic to Pn

It is clear that polysign numbers can be multiplied by non-negative real numbers
(i.e. magnitudes) componentwise and because of (1) all polysign numbers have
additive inverses. For example in P4, we see that y = −3+3#2 is inverse to
x = ?3#1 and hence we write y = −x (note that this does not say y = −x!).
One can then define the map ι : R → Pn, x 7→ σ4 max{x, 0} − σ4 max{−x, 0}
since both max{x, 0} and max{−x, 0} are valid magnitudes. A straightforward
though clumsy check (one needs to distinguish cases for all signs of the elements
of R involved) shows that ι is compatible with addition and multiplication, hence
at least the image ι(R) ⊆ Pn is a ring. For n > 1 there is no evident kernel,
hence we suspect ι(R) to be isomorphic to R, and we will see this in a moment.

By the universal property of polynomial rings, extending the definition of ι
to R[X] consists essentially of defining the image of X. A useful choice is to map
X to −1 since all other signs can be obtained from − by repeated multiplication.
Thus we define Φ: R[X]→ Pn by letting Φ(a) = ι(a) for a ∈ R and Φ(X) = σ11.
This is compatible with addition and multiplication by definition, thus showing
that at least Φ(R[X]) ⊆ Pn is a ring (and in fact an R-algebra).

From (1) it is clear that at least the polynomial fn := 1 +X + · · ·+Xn−1 is
in ker Φ, thus we obtain an R-algebra homomorphism

Φ: R[X]/(fn)→ Φ(R[X]) ⊆ Pn. (2)

Moreover, the map Pn → R[X]/(fn) that maps
n∑

i=1

σixi 7→
n∑

i=1

xiX
i + (fn)

is well-defined by the choice of fn and an obvious inverse of Φ. Hence Φ is in
fact bijective and an isomorphism of R-algebras. (Especially, ι is injective as
suspected provided n > 1). This proves

Theorem 1. For n ∈ N let fn = 1 + X + · · · + Xn−1 = Xn−1
X−1 ∈ R[X]. Then

we have that
Pn
∼= R[X]/(fn)

via an R-algebra isomorphism that sends σk1 to Xk + (fn).

3 Small Values of n

For small valuies of n, the left hand side of (2) is readily simplified (all isomor-
phisms being R-algebra isomorphisms):

R[X]/(f1) = R[X]/(1) ∼= 0,
R[X]/(f2) = R[X]/(1 +X) ∼= R,

R[X]/(f3) = R[X]/(1 +X +X2) ∼= C (per X 7→ −1+i
√

3
2 ),

R[X]/(f4) = R[X]/(1 +X +X2 +X3) ∼= R⊕ C (per X 7→ (−1, i)).
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4 Direct Sums of R and C isomorphic to Pn

The observations in section 3 generalize as follows:

Theorem 2. Let ζ ∈ C be a primitive nth root of unity. Then there is an See Errata

R-algebra isomorphism

Ψ: Pn → An :=

{
Cm−1 ⊕ R if n = 2m is even
Cm if n = 2m+ 1 is odd

(3)

that maps σk1 7→ (ζk, ζ2k, . . . , ζmk).

Proof. Let f = fn. Then the polynomial f has n − 1 distinct roots ζk in C
(k = 1, . . . , n − 1). At most one of these roots is real (and only if n is even).
Therefore f is the product of m polynomials g1, . . . , gm that are irreducible in
R[X] and all of degree 2, except that deg gm = 1 if n = 2m. More precisely, we
can take gk(X) = X2−(ζk+ζ

k
)X+1 for k = 1, . . . ,m except that gm(X) = X+1

if n = 2m. Since the gk are pairwise coprime, the chinese remainder theorem
gives us an isomorphism

R[X]/(f) ∼=
m⊕

k=1

R[X]/(gk)

that is given by sending X+(fn) to X+(gk) in the kth component. If deg gk = 2,
then we have an isomorphism R[X]/(gk) ∼= C that is given by X + (gk) 7→ ζk

and in case n = 2m we have R[X]/(gm) = R[X]/(X + 1) ∼= R where necessarily
X + (gm) 7→ −1 = ζm.

Putting this together with the isomorphism described in theorem 1 we obtain
an isomorphism Ψ as desired.

5 Norm

On R and C we have the standard absolute value. It has the advantage that
it is multiplicative, i.e. |ab| = |a||b| holds for all a, b. It is tempting to define a
norm on the algebra An occurring in (3) by

√
|z1|2 + · · ·+ |zm|2, i.e. by viewing

the algebra as standard vector space Rn−1 and taking the standard Euklidean
norm. However, this disregards the algebra structure. In order to make the unit
element of the algebra have norm 1 and to better represent the interrelation
between the “two halves” of the complex components, one commonly prefers
the following norm: Let dj be the dimension of the jth component of An, i.e.
dm = 1 if n = 2m and dj = 2 in all other cases. Then for x = (x1, . . . , xm) ∈ An

define

||x|| :=

√√√√ 1
n− 1

m∑
j=1

dj |xj |2. (4)

Since we will in general have zero divisors, this norm cannot be multiplicative,
but at least we have that ||1|| = 1 because the sum of the dj is dimAn = n− 1. See Errata

We can use the isomorphism Ψ to define a norm on Pn, also denoted by || · ||,
and of course a metric d(x, y) := ||x− y||. The following theorem shows that,
with respect to this natural metric, the standard units of Pn are the vertices of
a regular simplex:
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Theorem 3. For 1 ≤ k ≤ n we have ||σk1|| = 1. For 1 ≤ k < l ≤ n we have

d(σk1, σl1) =

√
2 +

2
n− 1

.

Proof. Since Ψ(σk1) = (ζk, ζ2k, . . . , ζmk) according to (3), we compute

||σk1|| = ||(ζk, ζ2k, . . . , ζmk)|| =

√√√√ 1
n− 1

m∑
j=1

dj · 1 = 1

because
∑m

j=1 dj = dimAn = n− 1.
For the second part we note that it is sufficient to consider the case l = n

because all other cases differ from this merely by a factor of absolute value 1 per
component. Thus we consider Ψ(σk1 − σn1) = (ζk − 1, ζ2k − 1, . . . , ζmk − 1).
Note that |ζjk − 1|2 = (ζjk − 1)(ζ

jk − 1) = 2− ζjk − ζjk
, hence

(n− 1)d(σk1, σn1)2 =
m∑

j=1

dj(2− ζjk − ζjk
)

= 2
m∑

j=1

dj −
m∑

j=1

dj(ζjk + ζ
jk

)

= 2(n− 1)−
m∑

j=1

dj(ζjk + ζ
jk

)

= 2(n− 1)− 2
n−1∑
j=1

ζjk.

The last equality holds because only one of each pair of conjugate roots occurs
in the complex components and hence we actually sum over all nth roots of
unity except 1, each root occurring either twice or with weight 2. We note that
χ : z 7→ zk is a character on the cyclic group of nth roots of unity. As long as k
is not a multiple of n, it is different from and hence othogonal to the constant
character. Hence

∑n−1
j=0 χ(ζj) = 0 so that the calculation continues

(n− 1)d(σk1, σn1)2 = 2(n− 1)− 2
n−1∑
j=1

ζjk = 2(n− 1) + 2− 2
n−1∑
j=0

χ(ζj) = 2n

and therefore d(σk1, σn1) =
√

2 + 2
n−1 as was to be shown.

6 Some History

The isomorphisms with better known algebras as shown in theorems 1 and 2
have been suggested long ago in usenet debates, especially for P1 upto P4.
After all, they are not very hard to find and especially (2) suggests itself from
the very description of polysign numbers. It seems that the first description
of an isomorphism P4

∼= R ⊕ C was given by R. Chapman in October 20033

3http://mathforum.org/kb/message.jspa?messageID=512617&tstart=0
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and even if not shown thoroughly enough initially, it seems to have been fixed
quickly. My own posts on the subject date back to 20074 showing Pn

∼=
R[X]/(1 +X + · · ·Xn−1) and the isomorphism P4

∼= R⊕C in an ad hoc manner
as well as later in the same thread deriving the metric on R⊕ C that makes the
tetrahedron regular (again mostly ad hoc). Others (e.g. lwalke3 in the same
2007 thread) have noted that the polynomial/ideal construction produces e.g. an
isomorphism P5

∼= C2 (which I ignorantly rejected). In fact it has been stated
repeatedly that Pn is always isomorphic to a product of R’s and C’s. A proof of
P3
∼= C can also be found on T. Golden’s website.5

It is likely that the issue has come up several times in the years 2004–2009, and
if so probably with the same results as presented in this paper. The usefullness
of polysign numbers beyond the status of an algebraic puzzle has yet to be
established. Nevertheless, in early 2009, T. Golden offered a 50$ prize for the
“first clean isometric isomorphism between P4 and R × C”.6 This is a bit of
a surprise in the light of all the different presentations of isomorphisms over
the past years. I took that incident as a motivation to prepare this paper with
self-contained proofs of theorems 1 and 2 as well as the metric considerations of
theorem 3.

Should this paper convince T. Golden to pay out that 50$ prize, I suggest
to him to consider giving the money to any of the named or maybe other not
named people having described the isomorphism before.

Errata

The following minor corrections had to be incorporated after first publication:

• page 2, statement of theorem 2: “a primitve root of unity” read “a primitve
nth root of unity”

• page 4, two lines below equation (4): “the sum of the dj is 1” read “the
sum of the dj is dimAn = n− 1”

4http://groups.google.com/group/sci.math/tree/browse_frm/thread/

2e2206fb5d1af68d/f545f48a6e9d84a7
5http://bandtechnology.com/PolySigned/ThreeSignedComplexProof.html
6http://groups.google.com/group/sci.math/browse_frm/thread/a30e642c0bcbdba1/

114d79cc0f65764c
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