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Given n rods of length 1, 2, . . . , n, which triangles with integer side lengths
a, b, c can be built from them? This problem has been discussed in usenet.1 The
problem can be formulated more generally so that the task is to find disjoint
subsets of {1, 2, . . . , n} such that each of these subsets sums to a given number.

For a non-negative integer n, let Nn = {1, 2, . . . , n} = {x ∈ N | x ≤ n}.
A partitioning (A, B,C, D) of Nn into four subsets is called a solution to the
problem (n; a, b, c, d) if

a =
∑
x∈A

x, b =
∑
x∈B

x, c =
∑
x∈C

x and d =
∑
x∈D

x.

We call a problem (n; a, b, c, d) solvable if a solution for it exists. Of course,
a solution can only exist if a + b + c + d = n(n+1)

2 , in which case we call the
problem valid. It is also clear that permuting a, b, c, d does not affect validity or
solveability of a problem.

For n ∈ N, let A(n) denote the number of solveable problems (up to permu-
tation) for the given n, i.e. the number of solveable problems (n; a, b, c, d) with
a ≥ b ≥ c ≥ d ≥ 0. Let B(n) denote the number of non-degenerate triangles
that can be put together using some rods ∈ {1, 2, . . . , n}, that is the number of
integer triples (a, b, c) with b+ c > a ≥ b ≥ c > 0 such that problem (n; a, b, c, d)
is solveable for suitable d; note that d ≤ c is not required and also that one
problem may give rise to several triangles. Let C(n) denote the number of such
triangles obtainable by using all these rods, that is the number of triples (a, b, c)
with b + c ≥ a ≥ b ≥ c > 0 such that problem (n; a, b, c, 0) is solveable.

Our goal is to describe these sequences, especially B(n) that was originally
asked for.2 It will turn out that the sequences can be described by the following
well-known sequences: For n, k ∈ N, let P (n, k) denote the number of partitions
of n into at most k parts (or equivalently: the number of partitions of n with
parts ∈ Nk).3 Let T (n) denote the number of triangles with perimeter n and
integer sides.4

The following theorem describes all solveable problems and the results about
problems involving the triangle inequality come as corollaries to it.

1Cf. [2]. The user with nicname(s) AI/Vikram was inspired to this question by [1, sequence
A002623]. James Waldby/Calumnist, rmilka/Ross and the author contributed to that thread
with partial results, which this article wants to extend.

2Meanwhile, sequences A(n), B(n), C(n) have been included in [1] as A160438, A160456
and A160455.

3The case needed her specifically, namely P (n, 4), is [1, sequence A001400].
4This is [1, sequence A005044]. It is well-known that

Pn
i=1 T (i) = P (n− 3, 4).
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Theorem 1. A valid problem (n; a, b, c, d) is solveable unless it is (up to per-
mutation of a, b, c, d) one of the singular exceptions (5; 6, 6, 2, 1), (6; 8, 8, 3, 2),
(6; 8, 7, 3, 3), (7; 10, 10, 4, 4) or (7; 14, 8, 3, 3) or matches (up to permutation of
a, b, c, d) one of the patterns (?; 1, 1, ?, ?), (?; 2, 2, ?, ?), (?; 3, 3, 1, ?), (?; 3, 3, 2, ?),
(?; 3, 3, 3, ?), (?; 4, 4, 1, ?), (?; 4, 4, 3, ?) or (?; 4, 4, 4, ?).

Proof. First, we show that the listed exceptions are indeed not solveable. As-
sume that (A, B,C, D) is a solution for one of the exceptions.

(?; 1, 1, ?, ?): The set {1} is the only one with element sum 1, hence A = B =
{1}, contradiction.

(?; 2, 2, ?, ?): Similarly, {2} is the only one with element sum 2, hence A = B =
{2}, contradiction.

(?; 3, 3, 1, ?), (?; 3, 3, 2, ?), (?; 3, 3, 3, ?): There are exactly two possible sets with
element sum 3, namely {3} and {1, 2}, hence A∪B = {1, 2, 3}, which leaves
no possibility for C.

(?; 4, 4, 1, ?), (?; 4, 4, 3, ?), (?; 4, 4, 4, ?): There are also exactly two possible sets
with element sum 4, namely {4} and {1, 3}, hence A∪B = {1, 3, 4}, which
leaves no possibility for C.

(5; 6, 6, 2, 1): We must have |A| ≥ 2, |B| ≥ 2. Together with |C| ≥ 1, |D| ≥ 1,
we arrive at the contradiction 5 ≥ 6.

(6; 8, 8, 3, 2): We have 6 6∈ C ∪D, hence wlog. 6 ∈ A, which implies A = {2, 6}.
But necessarily D = {2}, contradiction

(6; 8, 7, 3, 3): We have |A|, |B| ≥ 2 and |C|, |D| ≥ 1, hence necessarily |C| =
|D| = 1, i.e. C = D = {3}, contradiction.

(7; 10, 10, 4, 4): As noted under the forth item, C∪D = {1, 3, 4}. From |A|, |B| ≥
2 we then conclude |A| = |B| = 2 and hence min A, min B ≥ 10 − 7 = 3,
but one set must contain 2, contradiction.

(7; 14, 8, 3, 3): We must have C ∪D = {1, 2, 3} and as before |A| = |B| = 2, but
14 cannot be obtained from adding two different numbers ≤ 7.

Secondly, to show that conversely all non-exceptional problems are solveable,
use induction on n: The case n = 0 is trivial. Assume n > 0 and let (n; a, b, c, d)
be a valid problem that is not among the listed exceptions. Assume without
loss of generality that a ≥ b ≥ c ≥ d. If we have a solution (A, B,C, D) for
problem (n− 1; a− n, b, c, d), then clearly(A ∪ {n}, B,C, D) is a solution for
(n; a, b, c, d). This greedy approach can fail for two reasons: We may have a < n
or the problem (n− 1; a− n, b, c, d) may belong to the list of exception problems
without solution.

If a < n, then n(n+1)
2 = a + b + c + d ≤ 4n − 4 implies 2 ≤ n ≤ 6 and this

leaves only the following few posibilities with n > a ≥ b ≥ c ≥ d: (2; 1,1, 1, 0),
(3; 2,2, 2, 0), (3; 2,2, 1, 1), (4; 3,3,3, 1), (4; 3, 3,2,2), (5; 4,4,4, 3). These all
match (at least) one of the exception patterns, as indicated by highlighting the
numbers making up the pattern in boldface. We may therefore assume for the
rest of the argument that a ≥ n and it is only necessary to investigate all cases
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where (n− 1; a− n, b, c, d) is listed as an exception and then to give an alternate
solution for these cases.

All problems (n; a, b, c, d) such that (n− 1; a− n, b, c, d) is (up to permuta-
tion) one of the singular exceptions (m; x, y, z, w) are readily obtained by adding
m+1 to all components in turn (and possibly resorting) as done in table 1. One
verifies that all entries in the right column of table 1 are listed in table 3 with
an explicit solution.

If (n− 1; a− n, b, c, d) matches (up to permutation) a pattern of the form
(?; x, x, ?, ?), it is clear that a − n = x because otherwise (n; a, b, c, d) would
match the same exception pattern. It follows that n(n+1)

2 = a+b+c+d ≤ 3n+4x.
Note that n(n+1)

2 ≤ 3n + 11 implies n ≤ 7 and n(n+1)
2 ≤ 3n + 6 implies n ≤ 6,

thus only a limited number of candidates have to be checked. Likewise, for
patterns of the form (?; x, x, y, ?) with x ≥ y, we must have a− n ∈ {x, y} and
n(n+1)

2 ≤ 2n + 3x + y. Note that n(n+1)
2 ≤ 2n + 19 implies n ≤ 7 and n(n+1)

2 ≤
2n+13 implies n ≤ 6. Also, the forth number n(n+1)

2 −(2x+y+n) must be ≤ a.
This makes it an easy task to list all problems leading to exceptional patterns,
the result of which is shown in table 2. Again, one verifies that all entries in
the right column of table 2 are either exceptions themselves–as indicated by
boldface components–or are listed in table 3 with an explicit solution.

Since all cases that lead to an exception are either exceptions themselves or
are explicitly solved in table 3, the theorem is proved.

Table 1: Singular exceptions and what leads to them by a greedy step.

(5; 6, 6, 2, 1) (6; 12, 6, 2, 1), (6; 8, 6, 6, 1), (6; 7, 6, 6, 2)
(6; 8, 8, 3, 2) (7; 15, 8, 3, 2), (7; 10, 8, 8, 2), (7; 9, 8, 8, 3)
(6; 8, 7, 3, 3) (7; 15, 7, 3, 3), (7; 14, 8, 3, 3), (7; 10, 8, 7, 3)
(7; 14, 8, 3, 3) (8; 22, 8, 3, 3), (8; 16, 14, 3, 3), (8; 14, 11, 8, 3)
(7; 10, 10, 4, 4) (8; 18, 10, 4, 4), (8; 12, 10, 10, 4)

Table 2: Exception patterns and what leads to them by a greedy step.

(?; 1, 1, ?, ?) (6; 7, 7, 6, 1), (5; 6,6,2,1), (5; 6, 5, 3, 1), (5; 6,4,4,1),
(4; 5, 4, 1, 0), (4; 5, 3,1,1), (4; 5,2,2, 1), (3; 4,1,1, 0)

(?; 2, 2, ?, ?) (7; 9, 9, 8, 2), (6; 8,8,3,2), (6; 8, 7, 4, 2), (6; 8, 6, 5, 2),
(5; 7, 6, 2, 0), (5; 7, 5, 2, 1), (5; 7, 4,2,2), (5; 7,3,3,2),
(4; 6,2,2, 0), (4; 6, 2,1,1)

(?; 3, 3, 1, ?) (6; 9, 8, 3, 1), (5; 8,3,3,1), (5; 6,3,3,3)
(?; 3, 3, 2, ?) (6; 9, 7, 3, 2), (6; 8,7,3,3), (5; 8, 3,2,2), (5; 7,3,3,2)
(?; 3, 3, 3, ?) (6; 9, 6, 3, 3), (5; 8,3,3,1)
(?; 4, 4, 1, ?) (6; 10, 6, 4, 1), (6; 7, 6, 4, 4), (5; 9, 4,1,1), (5; 6,4,4,1)
(?; 4, 4, 3, ?) (7; 11, 10, 4, 3), (7; 10,10,4,4), (6; 10,4,4,3), (6; 9,4,4,4)
(?; 4, 4, 4, ?) (7; 11, 9, 4, 4), (6; 10,4,4,3)
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Table 3: Some special problems with non-greedy solutions

(8;22,8,3,3) ( {4,5,6,7}, {8}. {3}, {1,2} )
(8;18,10,4,4) ( {5,6,7}, {2,8}. {4}, {1,3} )
(8;18,8,8,2) ( {3,4,5,6}, {8}. {1,7}, {2} )
(8;16,14,3,3) ( {4,5,7}, {6,8}. {3}, {1,2} )
(8;16,10,8,2) ( {1,4,5,6}, {3,7}. {8}, {2} )
(8;14,11,8,3) ( {1,2,5,6}, {4,7}. {8}, {3} )
(8;12,10,10,4) ( {1,5,6}, {2,8}. {3,7}, {4} )
(8;10,10,8,8) ( {1,4,5}, {3,7}. {8}, {2,6} )
(7;15,8,3,2) ( {4,5,6}, {1,7}. {3}, {2} )
(7;15,7,3,3) ( {4,5,6}, {7}. {3}, {1,2} )
(7;11,9,4,4) ( {5,6}, {2,7}. {4}, {1,3} )
(7;11,10,4,3) ( {5,6}, {1,2,7}. {4}, {3} )
(7;10,8,8,2) ( {4,6}, {3,5}. {1,7}, {2} )
(7;10,8,7,3) ( {1,4,5}, {2,6}. {7}, {3} )
(7;9,9,8,2) ( {4,5}, {3,6}. {1,7}, {2} )
(7;9,8,8,3) ( {4,5}, {1,7}. {2,6}, {3} )
(6;12,6,2,1) ( {3,4,5}, {6}. {2}, {1} )
(6;8,6,6,1) ( {3,5}, {6}. {2,4}, {1} )
(6;7,6,6,2) ( {3,4}, {6}. {1,5}, {2} )
(6;7,6,4,4) ( {2,5}, {6}. {4}, {1,3} )
(6;10,6,4,1) ( {2,3,5}, {6}. {4}, {1} )
(6;9,6,3,3) ( {4,5}, {6}. {3}, {1,2} )
(6;9,7,3,2) ( {4,5}, {1,6}. {3}, {2} )
(6;9,8,3,1) ( {4,5}, {2,6}. {3}, {1} )
(6;8,7,4,2) ( {3,5}, {1,6}. {4}, {2} )
(6;8,6,5,2) ( {1,7}, {6}. {5}, {2} )
(6;7,7,6,1) ( {3,4}, {2,5}. {6}, {1} )
(5;7,5,2,1) ( {3,4}, {5}. {2}, {1} )
(5;7,6,2,0) ( {3,4}, {1,5}. {2}, {} )
(5;6,5,3,1) ( {2,4}, {5}. {3}, {1} )
(4;5,4,1,0) ( {2,3}, {4}. {1}, {} )
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Corollary 1. For n ≥ 8, we have

P

(
n(n + 1)

2
, 4
)
−A(n) = 2

[
n(n + 1)

4

]
+ 5.

Proof. For n ≥ 8, only the patterns of the form (?; x, x, ?, ?) and (?; x, x, y, ?)
of theorem 1 play a role and no two of them can match the same problem.
Clearly, (?; x, x, y, ?) matches if and only if the forth number is n(n+1)

2 − 2x− y,
thus each such pattern contributes 1 to the difference P (n(n+1)

2 , 4)−A(n). For
patterns (?; x, x, ?, ?), the remaining two numbers u ≤ v must add up to t :=
n(n+1)

2 − 2x, which is possible in P (t, 2) =
[

t
2

]
+ 1 ways. Therefore (?; 1, 1, ?, ?)

and (?; 2, 2, ?, ?) contribute[
n(n+1)

2 − 2
2

]
+ 1 +

[
n(n+1)

2 − 4
2

]
+ 1 = 2

[
n(n + 1)

4

]
− 1.

The claim follows by adding the contribution of the six patterns of the form
(?; x, x, y, ?).

Corollary 2. If n ≥ 8 and r ∈ {0, 1, 2, 3} is the remainder of n mod 4 then

P

(
n(n + 1)

2
− 3, 4

)
−B(n) =

{
11 if r = 1 or r = 2,
12 if r = 0 or r = 3.

Proof. Once again, the singular exceptions play no role if n ≥ 8.
If we assume that an exception pattern (?; x, x, y, ?) with x ≥ y eliminates

a triangle then either x, x, y are the sides of this triangle or the third side of
the triangle is the forth number n(n+1)

2 − 2x− y and must be less than 2x ≤ 8.
For n ≥ 8, only the first possibility remains, hence the patterns (?; x, x, y, ?)
together contribute 6 to the difference P

(
n(n+1)

2 − 3, 4
)
−B(n).

For pattern (?; 1, 1, ?, ?), clearly the triangle with side lengths (1, 1, 1) is
eliminated. The only other possibility is triangle (a, a, 1) with 2a + 2 = n(n+1)

2 .
Thus (?; 1, 1, ?, ?) contributes 2 if n(n+1)

2 is even (i.e. if r is 0 or 3) and 1 else.
For pattern (?; 2, 2, ?, ?), it is clear that triangles (2, 2, 1), (2, 2, 2) and (2, 2, 3)

are eliminated. The only other possibilities are (a, b, 2) with a = b or a = b + 1
and a+ b+4 = n(n+1)

2 . Hence (?; 2, 2, ?, ?) always contribute 4 to the difference.

Corollary 3. If n ≥ 4 then

C(n) = T

(
n(n + 1)

2

)
.

Proof. For triangles using all rods, only solutions to problems of the form
(n; a, b, c, 0) need to be considered. This immediately rules out all singular excep-
tions and also the patterns (?; x, x, y, ?) because 2x + y ∈ {7, 8, 9, 11, 12} cannot
be of the form n(n+1)

2 . For patterns (?; x, x, ?, ?) with x ≤ 2 the only problems
(n; a, x, x, 0) that correspond to triangles, i.e. those that have 1 ≤ a < 2x, occur
for n(n+1)

2 < 4x ≤ 8, hence n ≤ 3.
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As a consequence of the above corollaries, the sequences A(n), B(n), C(n)
are easily computed from other known sequences, once a few initial terms have
been determined explicitly. Some small result are presented in table 4 with
deviations from the corollary formulae indicated by italics.

Table 4: Initial terms of sequences A(n), B(n), C(n).

n 0 1 2 3 4 5 6 7 8 9 10 11 12

A(n) 1 1 2 5 13 35 93 215 437 815 1436 2413 3886
B(n) 0 0 0 0 3 20 70 172 366 709 1274 2166 3537
C(n) 0 0 0 0 2 7 12 16 27 48 70 91 127
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